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Abstract. We study spechal prapdes of quasi-one-dimensional enlended systems that show 
deterministic diffusion on the classical level and Anderson localization in the quantal description. 
Using semi-classical arguments we relate universal aspects ofthe spectral fluctuations to features 
of the set of classical periodic orbits, expressed in terms of the probability to perform periodic 
modo& which are likewise universal. This allows us to derive an anal*& expression for the 
spectral form factor which reflects the diffusive nature of the corresponding classical dynamics. 
It defines a novel spectral universality class which covers the transition between GOE statistics 
in the limit of a small ratio of the system size to the localization length, corresponding to the 
ballistic regime of disordered systems, to Poissonian level fluctuations in the opposile Limit. Our 
semi-classical predictions are illustrated and confirmed by a numerical investigation of aperiodic 
chains of chaotic billiards. 

1. Introduction 

The study of the relationship between classically chaotic dynamics and its quantum 
mechanical implications was initially focussed on bound systems, e.g. compact billiards 
[ 1 4  and atoms in strong fields [S-71. In recent years it has been extended to the 
investigation of the continuum states associated with such systems, i.e. to the quantal 
aspects of irregular scattering 18-12], Both fields have in common that they deal with 
potentials whose range is restricted to a compact phase-space volume. 

The investigation of the effects of classically irregular behaviour in spatially extended, 
solid-like quantum systems, on the other hand, is still in its infancy [13-151. It requires 
coping, simultaneously, with static d dynamic disorder, both of which pose difficult 
problems in themselves. Conceptual differences between bounded and extended systems 
appear both on the classical and on the quantal level. In extended chaotic systems 
nearby classical trajectories separate exponentially with a positive Lyapunov exponent, as 
in bounded chaotic systems. Yet, phase space is never covered ergodically in a finite 
time. Rather, extended systems approach ergodicity only asymptotically through a diffusion 
process. Hence, basic notions such as that of mixing due to chaotic motion have to be 
revised. It should be stressed that on the classical level, the diffusive coverage of an 
extended system is a universal property that does not depend on details of the dynamics, 
but rather on the dimensionality of the system. Furthermore, it holds both for periodic and 
aperiodic (random) potentials. On the quantal level, in contrast, the presence or absence of 
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translational symmetry is of decisive importance-periodic systems show band spectra and 
extended states, while disordered systems may display a transition to a discrete spectrum 
with Anderson-localized eigenstates and a concomitant suppression of conductance. 

In the present paper, we discuss the implications of an underlying chaotic dynamics 
for quasi-onedimensional extended quantum systems. We show that a new type of 
spectral fluctuation emerges which reflects the diffusive nature ofthe corresponding classical 
dynamics, and which is different from the standard ensembles of random-matrix theory 
[16-191. Using semi-classical arguments, and in particular, generaling an idea introduced 
by Hannay and Ozorio de Almeida [ZO], and by Berry [21,22],- we show~that the spectral 
properties are related to the way phase space is covered by the classical orbits. Specifically, 
we emphasize the significance of the overall probability for periodic motion as the quantity 
through which universal aspects of the classical dynamics determine the quantal spectral 
correlations. 

Our analysis forms a natural extension of OUT previous study of the spectral properties 
of the quantum kicked rotor [23]. The kicked rotor also belongs to the class of extended 
systems which show chaos-induced diffusion in the classical limit, and Anderson localization 
in the quantal case. Therefore, it has much in common with more realistic problems, even 
though the analogy is only formal. h o t h e r  application of the same idea was developed 
in [24]. There, a cluster of chaotic phase-space domains was considered which are 
interconnected by narrow channels. The fact that the total system possesses an additional 
time scale, characterizing the flow between the individual domains in the cluster, affects 
the corresponding energy-level statistics in a crucial way. Finally, arguments similar to 
those presented here were used to derive the spectral statistics of disordered solids in the 
mesoscopic domain 1251. 

The present paper substantiates the semi-classical arguments that form the basis of 
the studies mentioned above by a detailed numerical investigation of a model designed in 
analogy to a disordered solid [14]. Its building principle is to connect billiard-like cavities. 
which may induce classically regular or irregular dynamics, by pieces of waveguide to form 
a quasi-one-dimensional chain. More specifically, we choose a type of billiard element that 
corresponds to a quarter section of the Sinai billiard [26]. i.e. a square with one corner 
replaced by a quarter circle, bulging into the cavity. These elements %e connected in a 
zigzag fashion by intervening rectangulir sections adjacent to the shorter straight sides of 
the billiards (figure I@))-hence we call our model ‘domino billiard’ for short. It allows for 
a transition from pseudo-integrable to chaotic classical dynamics, by increasing the radius of 
the quarter-circle section of the billiard boundary from zero onwards, and z transition from 
translational symmetry to asymmetry bichoosing the lengths of the intervening waveguide 
sections as a periodic, quasi-periodic, Feudo-random. or random sequence. 

We introduce the geometry of the domino billiard in section 2 and discuss the classical 
dynamics in this system, focussing on the way an ensemble spreads along the billiard chain, 
In section 3.1 we give a phenomenological overview of the transport properties and the 
structure of the eigenstates of the quantiied domino billiard for the various cases mentioned 
above. Section 3.2 is devoted to our main analytical tool, a semi-classical theory for the 
fingerprints of classical diffusion in~the  spectral fluctuations. In section 3.3, we return to 
the domino billiard and compare various aspects of its spectral fluctuations, as obtained 
from numerical data, to our semi-classical predictions. We summarize our findings in 
section 4 and comment on open questions related to our approach. A heuristic derivation 
of the diffusion equation for the classical spreading in the domino is given in appendix A. 
Appendix B contains technical details of the procedure used to quantize the domino billiard. 
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Figure 1. Geometry of the domino billiard (a)  and classical scattering in one of its elements (b). 

2. The domino billiard: classical dynamics 

The geometry of the domino’billiard is presented in figure l(a). Here and in all that 
follows, we shall measure lengths in units of the width w of the connecting sections. The 
other defining parameters of the domino billiard are the radius p of the quarter-circle sections 
of the boundary, and the sequence LY~, 1 = I ,  2 ,3 , .  . . , L,  of the lengths of the intervening 
sections, where L is the number of billiard elements (corner plus connector) in the chain. 

A single ‘elbow’, i.e. a single comer with infinitely long waveguides attached 
(figure l ( b ) ) ,  is most adequately described as a scatterer [26]. Incoming (outgoing) 
trajectories are completely defined by their angles Bi(0, -x /2  < B < z/2, with respect 
to a normal on the boundary line between scatterer and waveguide, and positions yi(r), 
0 < y < 1, of the intersections with that line. In addition, we require the information 
of whether the trajectory leaves the scatterer on the same side it entered (reflection), or 
on the opposite side (transmission). The scattering is then characterized by the deflection 
functions 8f(6’i, yi) and y&, yi), and the binary-valued function s(& yi), s = reflecfion or 
transmission. 

If the parameter p is not exactly zero, scattering off the elbow fulfills the criteria 
for classical irregular scattering [12]: fluctuations of the deflection functions occur on all 
scales, there exists a fractal set of trapped trajectories, and the dwell-time dishibution 
decays exponentially for long times. The case p = 0, on the other hand, may be called 
‘pseudo-integrable scattering’, generalizing the term ‘pseudo-integrable’ coined for closed 
billiards with straight edges and angles rationally related to il [27-291. In pseudo-integrable 
billiards phase space has the topology of multi-handled tori formed by a discrete set of sheets 
between which a trajectory switches at each reRection off the boundary. Likewise, in the 
domino billiard with p = 0, the absolute values I ~ I I I ,  l p l l  of the longitudinal and transverse 
components of the momentum respectively, are preserved separately, so that there are four 
such sheets defined by pi1 = &.I~III. p~ = & / p ~ / .  

The position on the scale from pseudo-integrable (p  = 0) to completely chaotic (p >> 1) 
of the scatterers is the decisive parameter to determine the way an ensemble of classical 
trajectories spreads along the domino billiard. This process is dominated by three time 
scales. the ballistic time tb over which a trajectory keeps the memory of its initial condition, 
the mean hopping time rh, i.e. the mean dwell time, spent within a single scatterer 
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(more precisely: the time constant describing the exponential decay of the dwell-time 
distribution [12]), plus the mean transit time, needed to reach an adjacent scatterer, and 
the diffusion or Thouless time td  [30], which is the time required to cover a finite chain of 
billiards and will be defined below. In the limit of large p, it is justified to assume a complete 
loss of memory of a trajectory at each scattering event such that tb << th ,  and to account for 
the hopping-time distribution by its variance only. The spreading along the chain is then 
adequately described as a random walk along the one-dimensional, discrete chain of billiard 
elements, where the scattering events are completely characterized by probabilities T for 
transmission and R for reflection. On large temporal and spatial scales, compared to the 
mean hopping time th and the mean separation xh of the scatterers, a continuous probability 
density p ( x  , t )  for an ensemble spreading along the chain may be used, where t and x are 
measured in units of t h  and xh. respectively. Its time evolution follows a diffusion equation 
(see appendix A) 

with a diffusion constant 

~~ 

T 
R D = - - .  

For sufficiently small p, a single scattehg event will not completely destroy the correlations 
in a trajectory, so that fb exceeds 4. The description as a Markov process may still be used, 
however, if a single billiard element is replaced, as the constitutive element of the Markov 
chain, by a number of adjacent ones, and fh is scaled up accordingly. We stress that to derive 
the diffusion equation (2.1), we did not make any assumption as to the nature-periodic or 
random-of the length sequence ar of the intervening sections. 

For a chain of infinite extension, (2.1) is solved by 

with an initial condition p ( x , O )  = ~ S ( x  - XO). If the chain has a finite length, say 
-L/2 < x < L/2, then (2.3) is valid only for short times. The exact solution has to 
take account of the finite extension of the available space, i.e. i t  must obey Neumann 
boundary conditions at the ends of the chain. It reads 

p ( x ,  t )  = Ga('"OdzL)(x - xo, D t )  + Ga(dzL)(x - ( L  - x ~ ) ,  Dr) (2.4) 

where Ga(modp'(x, A) = (I/p) E,"=-, e x p ( - 2 ~ ~ n ~ A / p ~ )  exp(2innx/p) is a normalized 
periodic Gaussiant with period p and variance A. The second Gaussian in (2.4) reflects 
the restriction of diffusion near the boundaries x+ = &L/2. Equation (2.4) approaches the 
free-space solution, (2.3), for times shorter than the characteristic time 

needed to diffusively cover the length L.  This defines the Thouless time [30] mentioned 
above. Asymptotically for t >> td. p(x.  f) approaches equidistribution over the chain. 

t It is related to the Jacobi Theta function by Gac""Pl(x, A) = (I/p)+da[x(x/p - 1).exp(-2n2A/p2)]. 
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An important quantity is the mean probability to return to a point near the initial position 
xo in space. It is obtained by integrating p ( x ,  t )  over a suitably chosen spatial bin around 
xo, and averaging with respect to xo. We choose an interval xg - d / 2  < x < xo + d / 2  as 
the underlying bin, narrow enough to allow for the approximation p ( x ,  t )  p(x0, t )  within 
the bin. In the limit d + 0, we obtain from (2.4) 

For the two asymptotic regimes mentioned above, this means 

For later reference, we also introduce the probability for periodic motion. It is different 
from the probability to return in that it refers to a recurrence in phose space, rather than 
in configuration space. For the domino billiard, the energy shell has two dimensions in 
excess to the position x along &e chain in which the dynamics is diffusive: the angle 0 of 
the momentum and the position y across the billiard. Both of them are bounded, and both 
are covered ergodically on a very short time scale, the ballistic time t b  mentioned above. 
Therefore, on time scales t >> tb, we assume equidistribution in these dimensions, and 
obtain the probability for periodic motion by dividing P&) by AQ/L = AEldQ/dEI/L, 
the ratio of the full energy-shell volume An (we assume a small, but finite thickness A E  
in energy, see section 3.2) to the extension of the system in the x-direction 

The limit of pseudo-integrable scattering, p = 0, is conceptually more involved than 
the chaotic case discussed above. The principal differences are that, 

(i) the ballistic time diverges and the hopping-time distribution is no longer exponential 
but follows a power law, so that a description in terms of normal diffusion no longer holds, 
and 

(ii) the spreading along the chain now depends very sensitively on the nature of the 
sequence cur. Specifically, the spreading becomes superdiffusive (ballistic) if this sequence 
is periodic and subdiffusive if it is random. 

A detailed discussion of the pseudo-integrable domino billiard is deferred to a separate 
publication [31]. 

Figure 2 gives a synopsis of the classical spreading, in terms of the time evolution of 
Pr(s) of an initially localized ensemble, for the various cases discussed above. Here, we 
use a single billiard element as the bin underlying the definition of this quantity, and the 
dimensionless path length U = s / w ,  instead of time, as its argument. In order to generate 
periodic as well as pseudo-random chains from a single deterministic equation, the sequence 
cu, of the connector lengths has been determined according to 

(2.9) a[ = Bp [I + (PO + 10)') mod I ]  . 
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Figure 2. Clsssical spreading along the domina billiard. in terms of the time evolution of 
the probability to rehlm, for a periodic chain (a) and a pseudo-random chain @), both with 
(U) = 1.5, and for various values of p, The full energy shell for a single billiard element has 
been used as me phase-space bin defining the probability for periodic motion, and palh length, 
in units of w .  as its argument. 

This rule is motivated by an analogousrelation occurring naturally in the case of the quantum 
kicked rotor (see, e.g. [32]), where the parameter p is closely related to the relative quantum 
of action. It generates periodic sequences if p is rational and pseudo-random sequences if it 
is irrational (in all that follows, we use p = 0.2 and p = 0.8(&- i), respectively). In the 
case of a periodic chain (figure 2(a)), there is a transition, for increasing p ,  from initially 
ballistic to diffusive spreading. For the pseudo-random chain (figure 2(b)), the corresponding 
transition leads from subdiffusive (Pr(u) m U-" ,  U x i )  to diffusive spreading. In both 
cases, if p is finite, the non-diffusive Fehaviour is transient, and after a characteristic time 
which decreases with increasing p ,  it gives way to normal diffusion. 

3. The quantum domino b i i d  

The quantization of the domino billiard proceeds naturally in two major steps. In order to 
solve the Schrodinger equation (which in the present case is equivalent to the Helmholtz 
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equation and to the Maxwell equations in two dimensions) for a single element of the domino 
(scatterer plus connector) we employ techniques developed in the context of microwave 
transmission [33,34] and of electronic states in microstructured conductors [35-37]. The 
transfer-matrix method, a standard tool in the theory of microwave transmission [33,34] 
and of transport in disordered solids 1381, is then used to concatenate the elements to a 
chain and to find the eigenfunctions and eigenvalues for the complete billiard. Details of 
this partially analytical, partially numerical procedure are deferred to appendix B. 

3.1. Phenomenology of the quantum domino 

Before going into the discussion of the spectral properties of the domino billiard, we 
present a choice of numerical results in order to introduce into the phenomenology of 
this system. As mentioned above, the static disorder in the domino billiard is generated by 
varying the length of the connecting sections only, while the scattering elements are simply 
repeated. Accordingly, a good deal of the features of the domino billiard is determined 
by the transmission properties of these identical scattering elements. In figure 3, we show 
the wavenumber dependence of the transmission coefficients for a single open channel (as 
to the terminology of open and closed channels, see appendix B), for ( a )  p = 1 and 
(b) p = 10 , Besides singularities at the thresholds where new channels open, there are 
zeros of the transmission coefficient at intermediate wavenumbers. At these wavenumbers 
the incoming and reflected waves add up to a standing wave, while the transmitted wave 
decays exponentially. 

An important quantity to globally characterize the eigenstates and transport properties 
of extended systems is the Lyapunov exponent. If the system consists of a quasi- 
one-dimensional chain of discrete elements, the wavefunction can be constructed from 
the successive product of transfer matrices that describe the scattering properties of the 
individual elements, 

If the E are drawn from an ensemble of random matrices, the respective largest eigenvalue 
g(L)  of  the successive partial products T ( L )  grows roughly according to an exponential 
law [391. 

where h is the Lyapunov exponent characterizing the system. There is numerical 
evidence [40,41] that (3.2) remains valid if the form a pseudo-random sequence of 
the type specified in (2.9), with fast decaying pair correlations. Since, under the iterated 
application of a matrix, all vectors tend to approach the direction of the eigenvector with 
the largest eigenvalue, h can approximately be determined from the expression 

using an arbitrary non-zero initial vector 
The Lyapunov exponent is proportional to the inverse localization length [38]: if h = 0, 

the system can accomodate extended eigenstates, otherwise the eigenstates are localized. 
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Figure 3. Quantal bansmission probability for a single domino-billiard element as shown in 
figure I(b). in the wavenumber range where a single channel is open, for p = 1 ( a )  and 
p = IO (b). The dotted lines in (b) inficate the intend from which the spectral data shown in 
figures 8-14 have been collected. 

Figure 4 shows the function A@), where K = kw/n ,  both for a periodic and for a pseudo- 
random chain consisting of chaotic scatterers with (a) p = 1 and (6) p = 10 (the periodic 
case is not shown in (b)). In the periodic case there are continuous bands with A = 0, 
interspersed with geps where I .  > 0. Fer the pseudo-random chain h is positive everywhere. 
This result is independent of the type of the scatterers, provided they couple right- and left- 
going waves, or even different channels. It indicates that eigenstates are extended for the 
periodic chain and localized for the pseudo-random one, while the influence of the classical 
dynamics is restricted to finer details of the eigenstates. In particular, this implies that 
the two features commonly associated with one another, classical diffusion and Anderson 
localization, do not necessarily occur simultaneously in quasi-one-dimensional extended 
systems: there are systems which exhibit diffision in the classical limit, but have extended 
eigenstates-periodic chains of chaotic sub-units-in analogy to the quantum resonances 
observed in the quantum kicked rotor [32]. Conversely, there exist systems which support 
localized eigenstates, but show a subdiffusive classical spreading-random chains of pseudo- 
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Figure 4. Quantal transport along the domino billiard. (a) Lyapunov exponent characterizing 
the growlh of lhe largest eigenvalue of successive transfer-matrix pmducw along a chain with 
p = I and (a) = 1.5, in the wavenumber ange where a single channel is open. for a pseudo. 
random sequence a* (full curve) and a periodic one (broken curve), (b) as (a). but for p = 10 
and (a) = 15. The dotted lines in (b) indicate the interval from which the spectd dam shown 
in figures 8-14 have been collected. 

integrable sub-units. 
A direct inspection of the eigenstates confirms these observations. Figure 5 presents two 

typical eigenstates, for a chain with L = 100 elements, in a spatially coarse-grained manner, 
i.e. for each element 1 the absolute square of the wavefunction at a specific cross-section is 
plotted. For a periodic chain, the eigenstates take the form of Bloch states in a finite sample 
(broken curve). For a pseudo-random chain the eigenstates are exponentially localized (full 
curve). 

A quantity immediately related to the localization length is the mean inverse participation 
ratio, 

where the angle brackets indicate an average over an ensemble of realizations of the static 
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0 20 40 60 80 ~ 100 

Figure 5. Typical eigenstses of a domino billiard with 100 elements and p = 1, (0 )  = 1.5, for 
a pseudo-mndom chain (full curve) and B periodic chain (broken CUNe). 

Figurr 6. Probability distribution of the inverse participation ratio, et'. for L = IO. 20, 50. 
100, in the wavenumber m g e  1.10 6 K 6 1.15. for a pseudo-random domino billiard with 
p = io and (a) = 15. The inset shows the disu'ibulion of the Lyapunov exponent A for a 
corresponding infinite chain. 

disorder, with the energy restricted to some finite interval (this kind of average will be 
discussed in more detail below). The main part of figure 6 shows the probability distribution 
of 6;' for the pseudo-random chain with p = 10. (a) = 15, and L = 10,20,50,100, 
in the wavenumber range 1.10 < K:< 1.15. .For a system with a constant Lyapunov 
exponent, the fluctuations of CL' have a distribution with well-defined moments, depending 
on L [38,42,43]. In the case of the domino billiard, however, A itself varies strongly with 
energy, as figure 4 demonstrates. The distribution of 1 within the energy interval given above 
is plotted in the inset in figure 6. The fact that this distribution roughly coincides with the 
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various P([;') indicates that for a fixed h, the distribution of the inverse participation ratio 
must be fairly sharply peaked. 

We now turn to the.centra1 issue of this paper, the spectral fluctuations characterizing 
the domino billiard, and their relationship to the corresponding classical dynamics. 
We concentrate on the fluctuations since they predominantly contain information on 
the dynamical properties of the system. In contrast, the mean density, in the case 
of billiards, is essentially determined by simple geometric features such as size and 
connectivity. Distinguishing between these two aspects, we presuppose that it is possible 
to unambiguously decompose the spectral density (also referred to as the density of states, 
DOS) 

d ( E )  = C6(E - E,) 
i 

(3.5) 

into an average and a fluctuating part, i.e. 

d ( E )  = (d(E))  +&E)  ., (3.6) 

If there is a clear separation of scales in the spectrum, ( d ( E ) )  can be defined by averaging 
over the short-wavelength fluctuations, thus restricting its energy dependence to the long- 
wavelength tendencies. The domino billiard offers the opportunity to replace such a running 
average or low-pass filtering by a true ensemble mean. It is obtained by averaging over 
statistically equivalent realizations of the static disorder, given by the connector-length 
sequence CL,. In this way, the spectral fluctuations can be defined without assuming spectral 
ergodicity. Moreover, ensemble averaging does not imply any reshiction as to the scale 
of structures left in the spectral mean. In particular, the fact that the scattering sections in 
the domino billiard are repeated identically and are therefore not involved in the disorder 
average, leads to fine-scale features in its mean spectral density, as will be seen below. 

There are analytical predictions for the mean spectral density of billiards, in form of the 
Weyl formula and its subsequent refinements [44], which can be compared to the ensemble 
average. For billiards whose boundary is composed of sections with smoothly varying 
curvature, joined at a finite number of corners, and is described by Dirichlet boundary 
conditions throughout, an improved version of the Brownell formula (equation (VI.12) 
in [44]) gives the most accurate estimate for the mean spectral staircase 

E 

( N ( E ) )  = 1 dE' (d(E'))  . (3.7) 
0 

For a billiard with area U ,  circumference A, M corners with inner angles vm, m = 1,. . . , M 
(defined such that 'no corner' corresponds to fp = n), and a curvature ~ ( h ) ,  0 < h < A, 
along the circumference, the mean spectral staircase reads 

U A I M  1 "  

4x 4rr 24 ,,,=I % 
(N(k))  = -k2  - -k + - (5 - e) + - / dhK(A) + O(k-%k).  (3.8) 12n 0 

Here, 7, 0 < q 6 1, characterizes the error margin. The dispersion relation E = E ( k )  
depends on the specific application. This means, for the domino billiard with L elements 
and p > 0, 

1 L 1  
- - 2 [ 1 + [ 1 + (1 + ;) P + ( a ) }  L ]  Jk + 48 + . (3.9) 
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Here, (or) is the ensemble average of the connector lengths, and E = (kw/n)* denotes 
energy in units appropriate to the domino billiard (see (A2.4)). 

In figure 7, we compare numerical data for the mean spectral staircase with the prediction 
of (3.9), for the pseudo-random domino billiard with L = 10 and one open channel 
(1 < E < 4), in the cases ( U )  p = 1, (or) = 1.5 and (6) p = 10, ((U) = 15. The trend of 
the specbal staircase is roughly in agreement with the refined Weyl formula Significant 
deviations occur in the vicinity of the thresholds 6 = 1,4 where new channels open. In fact, 
similar structures appear also at the subsequent thresholds, E = 9, 16,. . . (not shown). It is 
not clear to what extent these inhomogeneities of ( N ( E ) )  represent true physics and to what 
extent they are due to our neglect of tunnelling through closed channels in the quantization 
procedure (see appendix B). Even if they are not artifacts, the resulting deviation from the 
Weyl formula may be explained by the fact that, with respect to the connecting sections, 
we are not in the semiclassical regime. 

E 

, 1 4 0 0 : ~  

1200 - Ib  

10 1.6 2 2  2.8 3.4 4.0 

E 

Figure 7. Integrated level density for a pseudo-random domino b i l l i d  with 10 elements and 
p = I ,  (a) = 1.5 (a).  p = IO, ((I! = 15 (b). The long-broken lines represent the corresponding 
results obtained from the refined Weyl formula. (3.9). the broken curve represent the energy 
dependence af the Lyilpunov exponent. in arbitrary units, for M infinite chain of the respective 
type. The heavy lines connect steps in ( N ( 6 ) )  with correlated peaks in A(6). In (b). the dotted 
lines indicare the interval from which the spectral data shown in figures 8-14 hae been collected. 
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Figure S. Integrated level density, in the wavenumber range 1.10 6 K < 1.15, for a pseudo- 
random domino billiard with 10 elements and p = IO. (U) = 1.5 (ful l  curve). The other curves 
represen1 the coirespon6ing energy dependence of Lhe Lyapunov exponent in ubiuw units, for 
an infinite chain of the same pseudo-random type (broken curve) and a periodic, but otherwise 
equivalent chain (dotted c w e ) .  

Going to smaller scales, we find additional structures superposed on the predicted smooth 
increase of ( N ( E ) ) .  They are contributed by the scattering sections of the domino, which 
form a repetitive element and therefore are not affected by ensemble averaging. Specifically, 
these structures relate predominantly to corresponding fluctuations in the Lyapunov exponent 
A (short broken curves in figure 7 give the €-dependence of A), which, in turn, can be 
partly ascribed to the wavenumber dependence of the transmission through the scattering 
elements, and partly to interference effects due to the periodic repetition of these elements. 
The occurrence of transmissionless states leads to singularities in A(€) and (d(c))  and thus to 
steps in ( N ( E ) )  (the heavy vertical l i e s  in figure 7(b)  indicate such steps that are correlated 
with peaks in A(€)). Furthermore, it is clear that in the limit of a perfectly periodic billiard, 
the band structure of the spectrum would be reflected in a strong +dependence of ( N ( E ) )  
in the form of plateaus at the band gaps and a correspondingly steeper increase within 
the bands. A similar, if less pronounced, structure persists in the present case. This is 
illustrated in figure 8, which is analogous to figure 7 but based on data for chains with 
p = 10 and a reduced mean connector length (a) = 1.5, in the restricted wavenumber 
range 1.10 < K 6 1.15. The plateaus in ( N ( E ) )  (full curve) are clearly associated with the 
band gaps of a periodic but otherwise equivalent chain (dotted curve). 

3.2. Semi-classical theory 
Throughout this paper, we restrict the spectral statistics to a 'sample' E,  - A E / 2  5 E C 
E, + A E / 2 ,  of the spectrum with an extension AE small compared to all spectral scales 
beyond the mean level separation. This is achieved by imposing a weight x(E - &) such 
that 

(3.10) 

We also assume that x ( E )  is symmetric around the origin. The truncated spectral density 
is then defined as 

(3.11) d,(E) = d ( E ) X ( E  - Et), 
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The accumulated density, 

(3.12) 

gives the effectixe finite dimension of the Hilben space underl)ing the vuncaied specuum 
Specifically, in the following we shall use the characteristic function of the spectral interval, 
shifted to the origin, 

(3.13) 

In this case, N x  = ( d ) A E .  

staircase, obtained by averaging numerical spectral data, as a rescaled energy variable, 
In addition, we ‘unfold’ the spectral density [18,19], i.e. we use the mean spectral 

r = (3.14) 

so that the spectral density becomes a dimensionless quantity with the average 

( d ( r ) )  1. (3.15) 

Thereby, we assume the transformation (3.14) to be approximately linear within the spectral 
interval chosen, i.e. ( d ( E ) )  = const for IE - E,I 5 AE/2, such that the shape of the weight 
function x ( E  - Ec) is not affected by it (we shall distinguish the transformed from the 
original functions only by their arguments, r or E ) .  For a compound billiird,~?his implies 
in particular that the spectral segment must remain within the energy interval between two 
subsequent chaMe1 openings. 

We shall restrict our discussion of the spectral fluctuations to the family of statistics 
that are based on two-point correlations only. They contain a good deal of the relevant 
spectral information and provide a convenient starting point for a semiclassical treatment. 
The spectral two-point cluster function [ I 6 4 9 1  is defined by 

(3.16) 

where we have taken into account that (d(r ) )  = 1. In this definition, the delta function 
serves to remove a singularity at r = 0 due to self correlations in discrete spectra. By 
convention [16], the sign has been chosen such that a negative value of the cluster function 
indicates positive level correlations, and vice versa. 

All other two-point spectral statistics can be obtained from the two-point cluster function 
by one or more integrations--e.g. the number variance, defined as 118,191 

9 ( r )  = ( ( N ( r )  - r)’) (3.17) 

is related to the two-point cluster function by 

(3.18) 
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The nearest-neighbour level separation P ( s ) ,  on the other hand, also involves all the higher- 
order spectral correlations and therefore cannot be derived from Yz(r).  

A quantity in the time domain, equivalent to the two-point cluster function, is the 
spectral form factor [16,19] 

bz(s) = -2 dr Yz(r)cos2nrt (3.19) Am 
where t is a dimensionless time, related to t by 

t 
t = -  ts = 2x2 (d) . (3.20) 

As in the energy domain, we shall distinguish functions of dimensionless time from their 
unscaled counterparts only by their arguments. 

The spectral form factor can be explicitly related to the quantum dynamics. In terms of 
the Green function, the spectral density reads 

ts 

- 1 
d(r) = --ImT ~ G W I  (3.21) 

where G ( E )  = G ( E )  - ( G ( E ) ) .  By inserting (3.21) into the definition for the cluster 
function, (3.16). and performing the Fourier transformation that leads to the form factor, 
we obtain 

iT 

b2(t) = -l+('IISmdre-""'rTr[E(r)]~(r Nx --cQ -rc)lz). (3.22) 

Equivalently, using the identity G ( E )  = (ih)-'lpdfeiE'/hU(t), the form factor can be 
expressed in terms of the propagator U@) = exp(-iHt/i?) as 

where Tr[fi(s)] = Tr[U(r)J - s(t) and i(t) = l-~dre-Zi"'TX(r). In (3.23) the 
convolution of Tr[fi(t)] with the Fourier transform of the spectral weight function endows 
the form factor with a finite time uncertainty A t .  It is related to the spectral range A r  
by A t A r  = 1, which expresses the minimum energy-time uncertainty in the present 
dimensionless units. Writing Tr[U(t)] in terms of the energy eigenstates and splitting 
the ensuing double sum into its diagonal and its off-diagonal part, 

a 1 - 2 i ( r )  Ccos(2n(r ,  - rs)t) + (k(t))'  

we obtain the form factor in the short-time limit, using i ( 0 )  = N x ,  as 

(3.24) 

1 
bz(r) = -1  t << - 

Nx 
(3.25) 
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while for long times, such that i ( r )  + 0, 

2 
bz(s) = -xcos(2rr(r ,  - rp)r)x(ra - r,)x(rp - rc) 7 >> 1. (3.26) 

The long-time limit bZ(7) depends on the nature of the spectral fluctuations. If there are no 
systematic degeneracies [45], it reads [21-231 

Nx n+ 

bz(5) + 0 T >> 1. (3.27) 

Equation (3.22) mediates between spectral fluctuations and dynamics and thus provides 
a starting point for the use of semiclassical methods. Formally, the trace of the Green 
function is given in terms of classicd~quantities by the Gutzwiller trace formula [46], 

1 

with amplitudes 

(3.28) 

(3.29) 

The sum in (3.28) comprises all classical periodic orbits j with energy E.  S, and p, denote 
action and Maslov phase associated with orbit j ,  respectively, T, its period, and Mi the 
associated stability matrix. Repetitionsand negative-time retracings are contained in (3.28) 
as separate terms. 

We assume the spectral segment A E to be large in terms of the mean level separation, but 
small on all other, and in particular, on classical scales. That is, we require on the one hand 
that A E  = 2nfi/At >> l/(a‘). For the weight function specified in (3.13) the corresponding 
time-domain function, i ( t )  = Msin(AEf/M)/t, forms a smooth approximation of a delta 
function with a width Af re Zn!lrh/AE. On the other hand, we presuppose that A E  is small 
enough so that within this range, dl;/dE << fi/(AE)’. For a billiard, the simple relation 
T, = L , w  holds, where L, is~the length of the orbit.  in this case, the condition 
for dT,/dE reads A E / E  << At/Tj,~or equivalently, Ap/p << ALIL,. In the language 
of quantum optics, this means that the states preparable within the truncated Hilbert space 
should be ‘squeezed states’ much narrower in energy (momentum) than in time (space), in 
the natural units given by the periodic orbits. With this assumption, we expand 

S,(E) Sj(E,) + ( E  - & ) T , ( E d .  (3.30) 

In the same vein, we replace all other energy-dependent quantities in (3.28) and (3.29) by 
their respective values at E = E,. 

These approximations allow us to write the spectral form factor (switching to 
dimensionless quantities again) as a double sum over periodic orbits [21,22], 

(3.31) 

In order to push the use of classical information further, it is helpful to split the double 
sum in (3.31) into its diagonal and off-diagonal parts. This necessitstes being specific about 
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which pairs of orbits should be regarded as identical and which as distinct-it is appropriate 
not to refer to a full coincidence of the classical phase-space representations of the orbits, 
but only to the identit). of the associated amplitudes and actions. In this way, the simplest 
type of quantum interference can be taken into account withiin the diagonal part of the 
sum, namely the constructive interference between pairs (or larger sets) of orbits that are 
related by some discrete symmetry conserving their amplitudes and actions (the distinction 
between unitary and anti-unitary symmetries, however, which crucially affects the spectral 
fluctuations [47], is beyond the present semiclassical treatment). Accordingly, we write 

(3.32) 

where g denotes the number of symmetry-related replicas of a given orbit, and the indices 
a, p count sets of symmetry-related orbits. 

In (3.32) the diagonal part is directly related to the classical dynamics, in a sense to 
be explained below, while the off-diagonal part forms a semiclassical account of quantal 
coherence. Lacking sufficient knowledge on the action pair correlations of the long periodic 
orbits to evaluate the off-diagonal part (see, however, [48]), we concentrate on the diagonal 
contribution, 

(3.33) 

where we have inserted the expression (3.29) for the amplitudes and replaced the time- 
domain weight function ( i ( r  - rW))’/Nx by a delta function. This is justified if the width 
of i ( r )  is small, A r  << 1, which is equivalent to the requirement A E  = 2nR/At >> I /@)  
introduced above. 

It is possible, however, only within a finite time regime to restrict the semiclassical 
form factor to its diagonal part, neglecting the quantal interference contained in the off- 
diagonal terms. This time window corresponds, by the energy-time uncertainty relation, to 
an interval of energy scales, bounded from below as well as from above by basic scales 
contained in the spectral segment to which bz(r)  refers. If a spectrum shows level repulsion, 
as is the case for compact chaotic systems, these energy scales are given, respectively, by 
the mean level separation (1 in the present units) and the overall length of the spectral 
segment (Ar in these units). For r << l /Ar ,  irrespective of the nature of the spectrum, 
b2(t) -+ -1 (see (3.25)). The lower energy scale defines a break time r* % 1 beyond which 
overall destructive interference dominates in the double sum, (3.26), and the form factor, 
upon averaging over the disorder or over some energy interval, decays to zero [21-231. 
Generally, the time T* can be interpreted as the ratio of the maximum number of eigenstates 
coupled by the dynamics (the effective Hilbert-space dimension), to the total Hilbert-space 
dimension. There is ample numerical and some analytical evidence (see, e.g. 1231) that in 
extended systems showing Anderson localization the effective Hilbert-space dimension is 
determined by the size of a single localization neighbourhood, if the system size L exceeds 
the localization length 6. Consequently, the time by which the phase differences in (3.26) 
approach a random distribution around the unit circle is then given by r* min(l,.$/L). 
The corresponding energy scale is the mean level separation within a subset of states that 
belong to the same localization neighbourhood. 
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In addition to these bounds due to quantal coherence, there is a restriction of a classical 
nature to the statistical treatment of dynamical information. It is the spirit of the present 
approach to relate universal aspects of the spectral relations to features of the classical 
dynamics that are likewise characteristic of a large class of systems. Such universal features 
of the classical dynamics are separated from individual properties, either by making use of 
the self-averaging property of the relevant classical quantities, due to the mixing name of 
the chaotic dynamics, or by explicitly averaging over different realizations of some static 
disorder, where it is present. In both cases, however, it takes some time xu until distinct 
periodic orbits have grown sufficiently dense such that the contributions of individual orbits 
average out and universal features dominate. A lower bound for r, is the period of the 
shortest periodic orbit [21,22]. A better estimate is based on the mixing time, which is 
closely related to the ballistic time tb mentioned in the previous section. It is proportional 
to the inverse Kolmogorov entropy [49] of the classical dynamics. The time uncertainty 
Ar implied by the finite extension of the spectral segment is also relevant for r,, since 
it determines the temporal separation of the delta functions of finite width comprising the 
spectral form factor (see (3.32)), below which they begin to coalesce. 

Yet another proviso on the classical side of our approach deserves to be mentioned. 
Throughout, we assume hyperbolicity, i.e. presuppose that all periodic orbits are isolated 
and unstable. This is, however, typically not the case. For example, the stadium billiard 
supports a family of marginally stable periodic orbits between, and perpendicular to, the 
straight sections of its boundary, the. so-called 'bouncing-ball trajectories' [50]. In the 
domino, there exist similar families pf neutral orbits, e.g. within the straight sections. 
In fact, it is possible to include this type of orbit in the semiclassical beatment of the 
spectrum [SI]. In our present work, we restrain from this refinement in order not to burden 
the results with details restricted to a specific application. 

It is possible to give an interpretation of the diagonal form factor, (3.33), in terms~of a 
classical quantity, extending the statistical approach chosen for the spectral fluctuations to 
the treatment of the periodic orbits on the classical side. The diagonal part forms a sum over 
squared amplitudes for periodic motion. This suaes t s  that the sum as a whole be related to 
the overall probability for the classical trajectories to return to their starting points in phase 
space after a given time t .  Proceeding as in [20] and [SI], we consider a quantity which 
measures the probability for periodic motion within a given energy shell. It is defined by 

where C2 denotes the phase-space volume, and x ( E ) / N ,  is the normalized weight function of 
width A E  = A r / ( d ) ,  as introduced above to define the spectral segment. By 8(2 f -* ) ( r t -~o)  
we denote a delta function within the invariant manifold to which the classical phase-space 
flow is restricted [20]. For chaotic systems, this is the (2f - 1)-dimensional energy shell 
of size w = Idfi/dEIE=E,, defined by 

(3.35) 

The subscript E, will be dropped from now on. By the principle of uniformity, introduced 
by Hannay and Ozorio de  Almeida [20], 

(3.36) 
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In order to evaluate (3.34), we assume that all periodic orbits are isolated and unstable, 
which is valid in completely chaotic systems. It is then possible to introduce, individually 
for each periodic orbit j ,  coordinates H (energy) and T (traversal time), tangent to the orbit, 
and a 2 ( f  - 1)-dimensional set p l ,  QI transverse to it [20,46,51]. Integration renders the 
energy weight function in (3.34) as a time-selection function ldE/dtlX(E, - Ej(t))/Nx, 
where the relation Ej(t )  is assumed to be unique and invertible, for a specific periodic 
orbit j ,  within the given energy interval around E,. Since the time-selection function has 
a small relative width, AT/?(&) M A E J E ,  (see above), we can replace it by a delta 
function. For the transverse coordinates p l ,  qL, the condition of periodicity results in the 
Jacobian det(Mj - I )  of the function rlI(rlo) - ria, r l  = (pl, q l ) .  If we collect, as 
in the semiclassical calculation, sets of periodic orbits related by a discrete symmetry into 
single terms with a multiplicity g, we obtain 

(3.37) 

Again, the time factor TJp) denotes the period of the underlying primitive orbit, not that 
of the full one. It gives the magnitude of the set of distinct possible starting points of the 
periodic orbit, and thus has the character of an additional, continuous degeneracy factor. 
Comparing (3.33) and (3.37), one finds that 

bkd)(r) = -I + g r r ( T t , ) .  (3.38) 

Here, we have replaced the primitive periods T$') in (3.37) by the full periods Tu as they 
occur in the corresponding place in (3.33). This approximation is justified by the fact that, 
in a chaotic system, the primitive periodic orbits proliferate exponentially with their period 
and thus outnumber the compound orbits consisting of repetitions of shorter primitive orbits. 

For a general billiard without a magnetic flux, the only' symmetq that leads to 
action-degenerate sets of periodic orbits is time-reversal invariance, so that g = 2. In 
the context of disordered solids, the corresponding enhancement by a factor of 2, with 
respect to the classical counterpart, of the quantal probability to return is known as 'weak 
localization' [52]. 

Equation (3.38) is the central result of our semiclassical analysis. It suggests that 
the spectral fluctuations in a given universality class, within the intermediate energy and 
time regimes specified above, are determined by two factors: the symmetry properties 
characterizing this class, as reflected in the orbit-degeneracy factor g, and the time evolution 
of the probability for periodic motion, embodied in the function I ( t ) .  As a consequence, 
the existence of distinct universal classical ways of spreading over the accessible phase 
space, associated with qualitatively different decay modes of I ( t )  (e.g. different exponents, 
depending on the dimensionality of the system), should be reflected in correspondingly 
distinct spectral universality classes. These ideas have been initiated and applied to 
integrable systems as well as to compact chaotic systems by Berry [21,22]. We shall 
now sketch their extension to systems that combine Anderson-localized eigenstates with 
deterministic diffusion on the classical level. 

Strictly speaking, a diffusive classical dynamics is neither a necessary nor a sufficient 
condition for Anderson localization to occur in quasi-one-dimensional extended systems, as 
has been mentioned above. Nevertheless, the simultaneous occurrence of both constitutive 
properties is the generic situation. The classical probability for periodic motion, in the 
case of diffusion over a quasi-one-dimensional extended system of finite length, has been 
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derived in section 2. For the sake of transparency, we shall work in the following with the 
asymptotes 

(3.39) 

of the exact expression given in (2.8). They are characterized by a cross-over from free 
diffusion to equidistxibution over the energy shell on the Thouless time scale td = L ~ / J C D .  

Since, in (3.39), time occurs only in its ratio to td, we can immediately switch to the 
dimensionless time t employed in spectral statistics and obtain the two asymptotes of Z ( t )  
as 

(3.40) 

The explicit expression for the cross-over time, in terms of quantities specific for the domino 
billiard, reads 

L 
4 x ~ , ( { A n ) / A c ) ~ ~  ' 

Sa = (3.41) 

Here, K~ is the dimensionless wavenumber at the energy E,  = V,2/2, and 0, denotes the 
diffusion constant, using the dimensionless path length U = uet/w instead of time. The 
mean spectral density (with respect tothe scaled energy E = ( k u ~ / x ) ~ )  is written as ( d ( t ) )  % 

(AN(c))/Ae % L(An(c))/AE, with the mean spectral staircase (n(6))  for a phase-space 
bin of size AQ/L, and the energy interval AE, chosen sufficiently small to allow for a 
linearization of (n(c) ) .  

Since the scaled Thouless time rd and the quantum-mechanical break time 
T* = min(1, c / L )  are independent of one another, a competition arises between them which 
is essential for the spectral universality class. The ratio 

~~ 

is the central parameter for this universality class [23], where 6 is the participation ratio of 
the localized eigenstates (for an infinite system, i.e. = limL.,,CL-see (3.4)), which in 
turn gives their approximate localization length. As (3.42) indicates, y can also be given a 
spatial interpretation-it roughly equals the inverse number of localization neighbourhoods 
the system comprises. This shows that sweeping y from 0 through the cross-over at y % 1 
to large values amountS to going from large systems. i.e. the isolating regime in the context 
of disordered solids, to small ones, corresponding to the ballistic regime in disordered solids. 
Inserting (3.40) into (3.38) now allows the discussion of the behaviour of the spectral form 
factor in these regimes on semiclassical grounds. 

For y << 1, i.e. Td >> 1, quantum interference lets the off-diagonal terms in (3.32) 
dominate before the diffusion process feels the finite length of the sample, so that only the 
first option in (3.30) enters the expression for the form factor 

~~~ ~ ~ ~~ ~~ 

(3.43) 
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Here, we have inserted (3.27) for the quantal long-time asymptote. The classically non- 
generic regime r 5 s, has been omitted for clarity, and we have suppressed the superscript 
‘d‘ for t!!e diagonal approximation. The limiting form of br’(s).  for y + 0, is 

(3.44) 

Equation (3.44) indicates that the corresponding two-point cluster function vanishes, and 
thus that the spectral fluctuations are correlation-free (Poissonian). 

If, on the other hand, y >> 1, i.e. z,j << 1, the c!assical Frobability for periodic motion 
reaches its long-time asymptote within the quantum-mechanically relevant time intewal. 
Accordingly, both options in (3.40) have to be taken into account, and the semiclassical 
prediction for the spectral form factor reads 

In the limit y -+ CO, the first option in (3.45) no longer applies, and 

(3.45) 

(3.46) 

This is Berry’s semiclassical approximation [21,22] for the spectral form factor associated 
with the COE (Gaussian orthogonal ensemble, see [16-19]). In this way, the cross-over 
from GOE (3.46) to Poissonian spectral fluctuations (3.44) with increasing system size or 
disorder, well known both in the context of disordered solids 153-561 and that of dynamical 
localization [57-62], is reproduced by OUI semiclassical theory. 

3.3. Numerical results 

In the remainder of the present section, we shall discuss numerical results, obtained for the 
domino billiard, that confirm and illustrate our semiclassical theory. In order to keep the 
numerical effort within reasonable limits, all the results presented in the following have 
been calculated in the wavenumber range 1 4 k w / z  c 2, i.e. for a single open channel. 
The semiclassical limit, on the other hand, amounts to a separation of the wavelength from 
all other length scales in the system. Therefore, that wavenumber range cannot be called 
‘semiclassical’ in a strict sense, even if p takes values >> 1. In any case, the agreement 
between semiclassical prediction and numerical data should not deteriorate, at least, if the 
parameters were pushed further towards the semiclassical regime. 

We chose a radius of curvature for the scattering elements of p = 10, and generated 
the connector-length sequence according to (2.9), with 6 = 1, so that 10 < or! < 20 and 
(or) = 15. In addition, an ensemble with 6 = 0.1, i.e. I 4 or! < 2, (or) = 1.5, has 
also been studied. We have investigated billiard chains of length L = 10,20,50, and 100, 
respectively, and have performed ensemble averages by varying the constant lo in (2.9) in 
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Table 1. Characteristic parameters for the specval ensembles underlying figures 7 and 9-12 
@=IO, (01)=15. 1 . 1 0 ~ ~ ~ 1 . 1 5 , A c = O . 1 1 2 5 .  0,,=0.0698). 

Table 2. Characteristic parameters for the spectrd ensembles underlying figures 8.13 and14 
( p  = IO, (a) = 1 .5 ,  1.10 < x < 1.15. Ae = 0,1125, D. = 0,lOl). 

~~. ~ ~ ~ 

L IO 20 50 100 

(AN) 21.42 42.63 ~ 106.16 212.04 
Y 2.719 1.353 ~= 0.5390 0.2691 ~ ~ ~ ~ 

steps of L. In this way, spectral statistical quantities have been evaluated on the basis of 
data sets comprising about 73 000 energy levels each. 

The corresponding classical data, serving, in particular, to determine the diffusion 
constant D,, are based on ensembles of 1000 trajectories each in 100 different realizations 
of the static disorder, (2.9). The initial conditions have been chosen along a common cross- 
section of the billiard, with random position along that line and random initial angle. The 
time evolution of the probability to return (see figure 2) and the variance for each ensemble 
have been calculated using whole billiard elements as bins, i.e. with the index I as a coarse- 
grained position variable, and using dimensionless path length U as time argument, whence 
Do was determined. 

The mean spectral staircase (An)/As, which also enters the parameter y ,  (3.42). was 
extracted from the spectral data (not from a Weyl-type formula). In this way, the appropriate 
values of y for each L could be determined, without fitting, from independent classical and 
quantal data. The results, for the spectral ensembles discussed in the following, are collected 
in tables 1 and 2. 

In figure 9, we show a comparison of the spectral form factor, &$’(T), as obtained 
from the spectral data, to our semiclassical prediction, (3.43) and (3.45). In order to check 
the semiclassical description of the short-time behaviour independently from the obviously 
crude approximation of the long-time asymptotics, we slightly modified our prediction by 
artificially imposing a cross-over to the exact form factor for the GOE. The GOE form factor 
is given by Dyson’s expression [16,17,19] 

~ 

2T - 1 - Thl(2T + 1) 
1 - ~1n[(27 + 1)/(2s - I)] 

r < l  
T 2 1 . b p ( 5 )  = 

We achieve a cross-over from &F’(T) to &Y@’(r) by the interpolation 

(3.47) 

with p ( ~ )  = T $ / ( T ~  + 7;) and TO = 0.5. Furthermore, for reasons to be explained below, 
we have performed a smoothing by imposing a cut-off on the corresponding cluster function 
Y d r )  for r Z L / 2 .  

The smallest sample size investigated, L = IO such that y % 3.2 (figure 9(a)), is near 
the GOE limit. Indeed, the data are well reproduced by (3.47) (dotted curves in the figures), 

~~ - 
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Figure 9. Speckal form fnctor for a pseudosaodom domino billiasd with p = 10 md lor) = 15, 
for chain lengths L = 10 (a). 20 (b). 50 (e), and 1W (d). compared to the semi-classical 
prediction as given in (3.48) Droken CUNe), and to the form factor for the WE, (3.47) (dotted 
curve). The data have been smoothed by low-pass filtering (see text). 

For smaller values of y (figures 9(b-d)), however, a description on basis of the COE is 
clearly  led out. In contrast, the comparison to the semiclassical prediction according 
to (3.48) (broken curve) shows satisfactory agreement throughout the range of y covered. 
In addition, figure 9 demonstrates that the classically determined diffusion constant yields 
surprisingly accurate values of the quantal parameter y .  The same agreement is found in 
the corresponding comparison for the spectral cluster function (figure lO(a-d)), while the 
reproduction of the number variance (figure 11) is less satisfying (the semiclassical curves 
have been derived from the spectral form factor, (3.48), via the inversion of (3.19) and via 
(3.18), respectively). 

In figure 12(a), we chose a different presentation of the form factor. Here, the abscissa 
has been rescaled individually for each data set by the corresponding value of y ,  and we 
have shifted the ordinate by 1 to allow for a logarithmic plot. The semiclassical prediction 
is represented by its form for small y (the isolating regime), where in the first option in 
(3.43), the second term can be neglected, 

(3.49) 

r >> 712. 

This allows the simultaneous demonstration of two essential aspects of the semiclassical 
theory, namely 
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Figure 10. Spectrd cluster function for a pseudo-rmdom domino billiard with p = 10 and 
(a) = 15, for chain lengths L = 10 (=,e), 20 (b.f), 50 (c.g), and 100 (d,h) ,  compared, in 
parts (a)-(d). to the semi-classical prediction as derived from (3.48) (broken curve). 
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Figure 11. S p e d  form factor for a pseudo-random domino billiard with p = IO and (a) = 15, 
for chain lengths L = 10.20,50, 100, compared to the semi-classical prediction for the regime 
y << 1, (3.49) (broken curve). The dimensionless time argument T has been rescaled individually 
for each &a Set by the corresponding value of y.  In part (a). the data have been smoothed by 
low-pass filtering (see text), and the function bZ(r) t 1 is shown to allow for a logarithmic plot. 

(i) the initial Ji increase, and 
(U) the scaling of bF’(s) with y in the regime y << 1. 

These predictions are confirmed by the fact that the four graphs included converge, with 
decreasing y ,  towards a limiting function which is well reproduced by (3.49). 

Figure 12(b) is analogous to figure 12(a), with the exception that no smoothing has 
been applied to the data. The most conspicuous feature appearing here, compared to the 
smoothed case, is a strong oscillation of the form factor. Its period scales with y ,  i.e. 
with the system size L, in the same way as the universal r-dependence underlying our 
semiclassical analysis. This observation is conlimed by the shape of the corresponding 
cluster functions (figure IO@-h)): Superposed on the noisy background, there is a marked 
peak near r = L,  i.e. far away from the central maximum of Yz(r) that incorporates the 
universal component of the spectral statistics (note that a negative peak in Yz(r)  indicates 
positive spectral correlations, see (3.16)). The low-pass filtering applied to obtain the data 
in figure 9 served just to remove this peak. 

Characteristic times and energies, respectively, that scale with L in the present units 
correspond to times and energies that are constant in units defined with respect to a single 
element of the chain. Specifically, r = L corresponds to the mean level separation for 
a single billiard element: if this energy difference is inserted for r, - ‘6 in the quantal 
expression for the form factor in the time regime 5 >> l/Nx, (3.26). an oscillatory 
contribution with the correct period is reproduced. The amplitude of this contribution 
grows as L - 1, if the number of eigenenergies involved increases with L .  This suggests 
that the oscillations reflect strong resonances of the scattering within single billiard elements, 
near the energies of the eigenstates of the corresponding closed sub-units. Their influence 
is amplified by constructive interference among the contributions from the L elements. 
In figures 13 and 14 we present results analogous to those shown in figure IO(e4a) and 
figure 12(b), respectively, but for billiard chains with connector lengths given by (2.9) with 
p = 0.1, so that (01) = 1.5. In this way, the random component of the chain is reduced in 
favour of its repetitive, periodic character. Indeed, the oscillations in bz(r) are even more 
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Figure 12. Number variance 'for a pseudo-mndom domino billiard wilh p = 10 and (a) = 15, 
for chain lengths L = 10,20,'50. a d  100, compmd to lhe semi-classical predinion BS derived 
from (3.48) (broken curve). ~ 

pronounced now, and the corresponding peak in the cluster function is very sharp, with 
a weight that increases roughly in proportion to L. It appears that we are dealing with a 
coherence phenomenon that occurs in dmost but not exactly periodic systems, so that Bloch 
theory does not yet apply. A quantitative explanation, however, is presently not at hand. 

i 

~ 

4. Summaw 

The purpose of the present work was 'to investigate the spectral fluctuations in quasi-one- 
dimensional extended systems that combine a diffusive classical dynamics with Anderson 
localization on the quantal level. We used semiclassical arguments to relate universal 
spectral features to aspects of the set of periodic orbits that are characteristic of the classical 
dynamics, and emphasized the role of the probability for periodic motion as the relevant 
dynamical quantity that conveys class~cal information into the spectral fluctuations. 

This strategy allowed us to derive'an analytical expression for the spectral form factor, 
a time-domain quantity from which all two-point spectral statistics can be obtained. It IS 
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Figure 14. Spectral form factor for a pseudo-random domino billiard with p = 10 and (a) = 1.5, 
for chain lengths L = IO. 20, SO, 100. compared to the semi-classical prediction in the regime 
y << I .  (3.49) (broken curve). The dimensionless time argument r has been rescaled individually 
for each data set by the corresponding value of y .  

dominated by quantum interference for very short and very long times. On intermediate time 
scales, however, the form factor is directly related to an analogous classical quantity. In 
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the present context, the time evolution of the form factor in this regime reflects the power- 
law decay of the probability for periodic motion in a diffusive dynamics. The spectral 
two-point correlations thus obtained form a one-parameter family, spanned by the ratio y 
of the localization length to the system size. It covers the cross-over from GOE spectral 
statistics in the limit y << 1, to Poissonian level fluctuations for y >> 1. This cross-over 
is analogous to the transition from *e ballistic to the isolating regime in the context of 
quasi-one-dimensional disordered solids. 

As a testing ground for OUT semic)lassical theory, we devised a quasi-one:dimensional 
system, the domino billiard, consisting of a chain of identical, irregularly scattering billiards 
connected by waveguide sections whose lengths form a pseudo-random sequence. A detailed 
numerical study of this model confirmed that it belongs to the system class addressed. Its 
spectral two-point correlations are weil reproduced by the semiclassical theory. 

A few additional insights provided by the investigation of this specific model deserve 
mentioning. The periodic version of'the domino billiard forms an instance of extended 
systems which classically show chaotic diffusion but support extended eigenstates and have 
a band spectrum, in analogy to the quantum resonances occurring in the quantum kicked 
rotor. If the domino billiard deviates only slightly fiom exact periodicity and the connectors 
coupling the scattering elements are n y w ,  the transmission and spectral properties of these 
near-identical sub-units are amplified by interference among their contributions and strongly 
affect the spectrum of the full chain&.g. the level separation typical for a single sub-unit is 
reflected in a sharp peak in the spectral two-point correlations and a corresponding marked 
oscillation in the spectral form factor: Furthermore, the transport properties, in the limit 
of narrow connecting channels, are s$ngly influenced by the occurrence of wavenumbers 
where the transmission through the scatterers vanishes. At such wavenumbers, bound states 
can be formed between adjacent scattering elements. In the case of periodic arrays of 
chaotic scatterers, supporting extended states as mentioned above, the high density of these 
exceptional wavenumbers may contribute to the cross-over from ballistic quantal transport, 
due to the prevalence of extended stat&, to deterministic diffusion in the classical limit. 

Improvements and generalizations of the present work are feasible in various directions. 
In the derivation of (3.38), which relat+ the spectral form factor to the classical probability 
to return and is of decisive importance for our approach, we made the crucial assumption 
that all periodic orbits are isolated and unstable. In fact, there exists an analogous relation 
for the opposite extreme-integrable systems-which however, reads different [20,21]-it 
does not contain the additional time f+tor occurring in (3.38), which reflects a degeneracy 
between equivalent starting points along an unstable periodic orbit. It is clear that this 
distinction is due to the different dimensionalities of the classical invariant manifolds in 
both cases. However, a relation analogous to (3.38) is not available for pseudo-integrable 
systems, nor for generic systems with'a phase space that encompasses both integrable and 
chaotic areas. Another shortcoming is~that we are not able to describe the cross-over from 
the time regime where the spectral form factor is dominated by the classical dynamics, to 
the regime where quantal interference 'prevails. In order to achieve this, a detailed analysis 
of the off-diagonal part of the periodic-orbit double sum, (3.32), is required [48]. 

An extension of our semiclassical peory to two-dimensional systems is straightforward 
and has been applied to a two-dimensional version of the kicked rotor [=I, with encouraging 
results. An extension to three dimens/ons, however, is far more demanding. It requires a 
semiclassical understanding of the Anderson transition from localized to extended states 
at finite disorder. In fact, even the l+s subtle transition to extended states for vanishing 
disorder, in one and two dimensions, has not yet been described in semiclassical terms, e.g. it 
is not clear how a chaotic classical dynamics is reflected in a quantal band structure (if indeed 
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it is). As long as the spectrum is discrete, the notion of orbit degeneracy provides a means 
to take interference effects due to repetitive structures in the potential into account within 
the present approach. Our numerical results for a ‘near-periodic’ billiard (see figures 13 and 
14) demonstrate that the interference between repeated identical sub-units of a compound 
system can indeed drastically affect the spectrum. However, the semiclassical description 
of band spectra, or of spectra with a fractal measure as they occur at the borderline between 
localized and extended states 1131, is still an open subject. 

Finally, we emphasize that the semiclassical approach is by no means restricted 
to spectral properties, but also forms a promising tool for the description of transport 
phenomena [63,64]. 
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Appendix A 

In this appendix, we sketch how to derive, in a heuristic manner, the diffusion equation 
(2.1) for the domino billiard. We start from the assumption that the scattering is completely 
characterized by a single time scale, the mean hopping time fh, a single spatial scale, 
the mean separation Xh of the scatterers, and the probabilities T and R for transmission 
and reflection, respectively, at a single scattering event. Accordingly, we use the coarse- 
grained, discrete variables i (number of scattering events) for time and n (position along the 
quasi-one-dimensicnal chain) for space, and introduce the probabilities P*(n, i) to approach 
scatterer n from the left (right) at time i ,  Then, by our construction, 

P+(n, i) =TP+(n - 1, i - 1) + RP-(n - 1, i - 1) 

P-(n, i) =TP-(n + 1, i - 1) + RP+(n + 1, i - 1). 
(A.1) 

We express the total flux leaving scatterer n at time i, P+(n + 1, i) + P-(n - 1, i). according 
to (A.l), use flux conservation, R + T = 1, and define 

(A.3 P(n3 i) = P+(n, i )  + P-(n, i )  

to obtain the relation 

P + ( n + l , i ) + P _ ( n - l , i ) = P ( n , i -  1) (A.3) 

From these basic relations, a few algebraic manipulations lead to a difference equation for 
the time evolution of P(n,  i). 

~ ( n ,  i )  - P ( R ,  i - 1) = T [ P ( ~  - 1, i - 1) - ZP(n, i - 1) + ~ ( n  + 1, i - I)] 

+ ( T - R ) [ P ( n , i -  l ) -P (n , i -2 ) ] .  (A.4) 

Going to the continuum limit, n + x and i + t ,  we replace the terms in (A.4) by partial 
derivatives of the probability density p ( x ,  t ) .  Reordering finally yields the diffusion equation 

a 1 T  a2 
- p ( x , t ) = - - - p ( x , 2 ) .  
at 2 R ax= 
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Appendix B 

This appendix serves to present the technical details of the solution of the Helmholtz equation 
for the domino billiard, resulting in a secular equation which defines the eigenenergies. 
The building principle of the domino billiard suggests dividing this task into two main 
steps: (i) solving the Helmholtz equation for a single element of the domino (scatterer plus 
connector), and (ii) concatenating the elements to form a chain and finding eigenfunctions 
and eigenvalues for the complete billiard. Techniques appropriate to step (i) have been 
developed in the context of microwave transmission [33,34] as well as that of electronic 
states in microstructured conductors [35-371. The transfermatrix method applicable to step 
(ii) has been adopted from microwave theory [33.34] and from the theory of disordered 
solids [38]. 

Solutions of the Helmholtz equation for a single scattering element, including the 
adjacent sections of waveguide, are most easily constructed by partitioning this element 
into the three regions: left waveguide 0, comer (U), and right waveguide (III) (figure Bl), 
and matching the individual solutions along the borderlines. 

The waveguides lead, by their finite width, to a quantization of the transverse wave- 
number and to the existence of open and closed channels in the longitudinal direction 
(figure B2). Allowed values for the transverse wavenumber are 

IT 

W 
k k = n -  n = l , 2 , 3  ,.... 03.1) 

By energy conservation, k2 = k i  + k f  = const, (B.1) implies a quantization also of the 
longitudinal wavenumber (figure BZ), 

nK 2 kin = k2 - (,) 
For n r / w  6 k,  kiln is real ('open channels'), while for n n / w  > k.  kin is imaginary ('closed 
channels'). Open channels cany runnidg waves, closed channels evanescent (exponentially 
decaying) waves. The number of open channels is 

N = [y]  (B.3) 

where [ I  denotes the integer part. In the following, we shall use dimensionless wavenumbers 
and energies, defined by 

k w  2 K = -  6 - K  
K 

(B.4) 

such that 

It is understood that for n > N .  the wavenumhers ~ 1 1 ~  are chosen as the positive imaginary 
roots ~ 1 1 "  = i m :  An important feature to be taken into account in the construction 
of solutions for one complete element. regions I+II+III. is the reflection symmetry of the 
billiard with respect to the diagonal x '= y (see figure Bl). As a consequence, there exist 
two symmetry classes of solutions, 

$'(Y,X) = W ' ( x , y )  (B.6) 
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Figure B1. Partitioning o f  a single domino-billiard 
element into regions wheze different quantization 
procedures apply. The dotted line indicates the basic 
spatial symmetry characterizing the S-matrices for this 
b W  element. 

0 $1 

Figure B2. Open and closed channels in recmangular 
waveguides. The quantization of the transverse 
momentum kL, implies, by energy conservation, a 
quantization also o f  the longitudinal momentum, kll. 
Open channels (full lines) cany running waves. closed 
channels broken lines) wry evmwxnt waves. 

The wavefunctions in regions I and III can now be expressed as 

m 

They will have to be matched with some convenient set of basis solutions for region II, 
to which the index U refers. If we make the additional assumption that the connecting 
waveguides are sufficiently long, such that evanescent waves originating at the neighbouring 
scatterers have decayed completely towards the scatterer at issue, we can set 

Bum Ii - B ~ * = o  - v.m  form>^. (B.8) 

This truncation amounts to the neglect of tunnelling through closed channels. It is at its 
worst for values of K immediately below the thresholds where new channels open, because, 
there, the decay length I / a m  of the lowermost closed channel (n  = NC 1) diverges. 

Solutions for region I1 are determined by the condition that they vanish along the outer 
walls and along the quarter circle (which shrinks to a point for p + 0). For p > 0, they 
have to be calculated numerically [26]. 

The final step consists in solving the set of coupled linear equations for the coefficients 
Ai*m, E&, AE, BE, implied by the condition that the wavefunctions and their first 
derivatives match along the borderlines y = I, 0 < x < 1 and x = 1, 0 < y < 1, 
respectively. In order to restrict this set to a finite size, both the sum over the A-coefficients 
and the index U in (B.7) must be truncated at some finite maximum value M > N, chosen 
according to the required numerical accuracy. 

In view of the intended use of the solutions thus conshucted, it is appropriate to find 
linear combinations of them such that for the incoming wave (say, from region I), only a 
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single channel is 'on', 
I 
! 

M 
~ 

-h% (y- Os' in(nnx) + r,,mei"x~~"'Y-l)sin(m~x) 
m=I 

@%,Y) = e  

(B.9) 
M 

@ F ( x ,  y) = tn ,mei~ '~*(~-l)s~ m(mny). 
m=l 

i 
The coefficients rn,,,, and tn,m can then be interpreted as reflection and transmission 
amplitudes, respectively. 

If the billiard element is considered as a scattering system, all the information required 
for a complete description is contained in the two N x N matrices rn,,,,. t",,,,, where now m 
also runs over the open channels only, 1 < m < N .  This information can be organized in 
various ways. The standard representation is in the form of the S-matrix, which relates the 
state of the system after the scattering ,to its state before the scattering, i.e. the outgoing 
to the incoming wave. The notions of reflection and transmission, in contrast, refer to two 
distinct spatia! directions. 

In the situation described by (B.9): the incoming wave consists of a monochromatic 
wave in channel n from the left and ,no flux from the right, while the outgoing wave 
comprises the reflected wave towards the left and the transmitted wave towards the right. 
Consequently, the relation 

(:) =s(;) (B.lO) 

must hold, where I denotes the N x +-unit matrix, and S is a 2N x 2 N  matrix. Due 
to the spatial symmetry of the scatterer (see figure BI and (B.6)). left and right are 
indistinguishable, so that 

I 

(:) = s (  ;) 
must also hold. Equations (B.10) and (B.11) together imply 

In addition, invariance with respect to time reversal requires that 

(B.11) 

(B.12) 

(B.13) 

A consequence of this relation is the conservation of flux, separately for each open channel 
n, 

(B.14) 

It is sometimes useful to distinguish explicitly between symmetric and anti-symmetric 
solutions (see (B.6)) also in the S-matrjx. By forming the two corresponding components 
of (B.10), one has 

I 
r f r = s * ~ = s * .  (B.15) 
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where s+, s- now denote N x N matrices. This implies the relations 

(B.16) r = i ( s + + s - )  t = z ( s  1 +  -s-) 

and, by (B.12) 

1 4 s + - s -  s++s-  
s++s-  s + - s -  S=.! 

In order to construct solutions for the full billiard chain, a mahix is required that 
expresses a spatial rather than a temporal relation, namely the relation of the state on the 
far right of the scatterer to the state on its far left. In analogy to (BJO), (B.1 I), and (B.13), 
the transfer matrix (not to be confused with the T-matrix occurring in scattering theory) is 
defined by 

It obeys the relations 

(;) = T ( : )  

expressing spatial symmetry, and 

(P,)  = T ( : )  

(B.19) 

(B.20) 

due to time-reversal invariance. Together (B.18)-@.20) imply a general expression for the 
transfer matrix of a single scatterer, 

(B.21) 

Using (B.16) to express the reflection and transmission matrices for the corner by the 
elements of the S-matrix gives 

where we have not indicated the wavenumber dependence on the right-hand side for 
conciseness of notation. 

The full transfer matrix for a single element of the domino billiard consists of three 
factors, one for the scatterer, one for the adjacent section of waveguide, and one factor that 
takes account of the zigzag shape of the domino billiard. The transfer matrix associated 
with a straight section of waveguide of length cz! is a diagonal 2N x 2 N  matrix of phase 
factors, 

(B.23) 
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where 

The third factor, for the zigzag shape, takes the form 

where J iotes an N x N matrix. It introduces an addi 

'I 0 

(8.24) 

: even-numbere 
channels. The transfer matrix for the complete chain, consisting of L elements. is then 
given by the product 

(8.26) 

Eigenstates and eigenvalues of the complete domino billiard are determined by the 
additional requirement that the billiafd chain be closed at both ends, i.e. that the 
wavefunction vanish along two straight lines that form 'caps' on the remaining open sides 
of the first scatterer and the last waveguide section, respectively. In order to derive an 
explicit condition that incorporates this requirement, we first state a corollary on the general 
form of the coefficient vector that descdbes the wavefunction at each cross-section between 
two adjacent elements of the billiard chain. We follow the convention introduced by (B.10) 
above, that the first N elements in alstate vector correspond to right-going waves, the 
subsequent N elements to left-going waves. Then, state vectors generated by a product of 
transfer matrices of the type given by (8.261, must have the form 

(B.27) 

if $(') has this form. The proof, by induction, is a straightforward calculation and will not 
be given here. 

The subspace of all states that satisfy the boundary condition at the 'lower end' of 
the domino billiard, where the wavefunction is given by @col,  is constructed as follows: 
since each channel n corresponds to a, Fourier component of the wavefunction along the 
straight line closing the billiard, the amplitudes for right- and left-going waves have to 
cancel separately for each channel. Therefore, the subspace defined by this condition is 
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spanned by the unit vectors 

l < n < N .  (B.28) 

For an arbitrary vector in this subspace, given by @("I = E,"=, cn@,?, with E,"=, lc,l2 = 1, 
the state at the 'upper end' of the chain reads @ ( L ) ( ~ )  = E,"=, c n @ i L ) ( ~ ) .  By the same 
argument as above, in order to satisfy the corresponding boundary conditions also for 
@ ( L ) ( ~ ) ,  right- and left-going waves have to cancel separately for each channel. Using 
@.27), this results in 

These equations are simultaneously solvable if and only if 

(B.30) 

which represents the secular equation for the domino billiard. 
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